How much is enough?

- The title belongs to the superfamily of rhetorical questions
- For example
 - How many technical replicates are appropriate?
 - How many experiments should be done?
 - How do I know when an experiment is 'right'?
- My answer to all of these questions is: Until you are sure!
- Which begs the next question: what do you mean by 'sure'?
 - I would be prepared to be the first person to administer a new compound to a patient.

The role of pharmacokinetics-pharmacodynamics

- PK-PD provides supportive evidence for causality i.e. evidence that
 - the observed effects are a result of the drug*
 - the drug exerts a known and predictable biological effect that can be harnessed for therapeutic benefit*
- PK-PD is an alternative to other ways causality can be established
 - Multiple comparative clinical trials

^{*} These ideas from Peck CC, Rubin DB, Sheiner LB. Hypothesis: a single clinical trial plus causal evidence of effectiveness is sufficient for drug approval. Clin Pharmacol Ther 2003; 73: 481–90.

EMA guidance on PK-PD

21 July 2016 EMA/CHMP/594085/2015 Committee for Medicinal Products for Human Use (CHMP)

Guideline on the use of pharmacokinetics and pharmacodynamics in the development of antimicrobial medicinal products

Central role of PK-PD for antimicrobial drug development

- "For reasons of lack of feasibility and/or as part of abbreviated clinical development programs...for unmet need...essential there are very robust PK-PD analyses to support the likely adequacy of regimens..."
- "Minimise or replace dose-finding studies"
- "Central role in regimen selection"
- "Selection of regimens for special populations"
- "Selection of regimens for minimization of selection of resistance"

Additional observations before we start [2/2]

- It is dangerous to make too many assumptions about the PD of a drug
- Our own approach is to do the experiment and see what we get
- We are primarily guided by the pharmacodynamics
 - Make the observation, then figure out why
 - (not the other way around)

The first big task

Determination of the Relevant Pharmacodynamic Index

(Dose Fractionation Studies):

In vitro vs. in vivo experimental models

EMA: "in vitro and in vivo models have strengths & weaknesses and may be regarded as complementary"

Advantages of fractionation in laboratory animal models

- Biological barriers
- Immune effectors
- Not confounded by resistance
- Effect site PK
- Thigh and lung can be used:
 - Less variance with thigh
 - More effect with lung

Advantages of fractionation using in vitro models

- The ability to examine the pharmacodynamics of resistance
- The ability to escape from limitations of lab animal PK
- Ability to more easily perturb the regimen to uncover relevant biology

In vitro models are not easier, not cheaper, not faster

Difficulties of dose-fractionation studies

- Uncommon to get the experiments properly centred the first time
- Distinguishing real biology from noise
- Deep understanding of the PK-PD & design principles important
 - Schedules crowd too closely around the t1/2, everything pushed to AUC
 - If schedules stretch too far beyond t1/2 everything pushed to time>MIC
 - Fractionating at minimal & maximal effect can only ever return AUC

Next steps

wild-type (WT) organisms

The magnitude of the pharmacodynamic index (PDI) – Do I have a drug?

Magnitude of the PDI associated with stasis, 1-log, 2-log drops etc. from in vivo and in vitro studies Pharmacodynamic target Phase I programme, variability in The 'triple PK, toxicity lock' Clinical dose and Covering the wild-type schedule & limits on that dose Clinical microbiology programme for this part requires a definition of the

Magnitude of effect

Pharmacodynamic variability

- How many species?
 - Certainly leading pathogens are important
 - (e.g. Escherichia coli, Klebsiella pneumoniae, but not every member of Enterobacteriaceae)
- How many strains of each species?
 - n=4-10 (until you are sure)
- Which resistance mechanisms?
 - Two separate issues: see next few slides

Pharmacodynamic index producing stasis

Fraction T>MIC

Strains with different resistance mechanisms

- Selecting strains with a range of MICs
 - Provides evidence the MIC is transmitting biologically relevant information
 - MICs within the WT and beyond the WT
 - Building evidence that the MIC is helpful
- Demonstrating activity against resistance mechanisms expected in the clinical programme
 - The PD of the new drug should be the same as WT
 - e.g. a new carbapenem should be pharmacodynamically naïve to presence of an ESBL
 - Explicit demonstration of the lack of cross resistance

Probability of success with stasis target

Probability of success with 2-log target

The allure of rigor, certainty, and absolutism

The following combination is lethal for pretty much any drug:

A very rigorous endpoint (e.g. orders of logarithmic killing + suppression of resistance)

Strains with the highest pharmacodynamic index are covered

90% probability of target attainment at the upper edge of the wild-type

Strategy for the "triangulation of stories"

- Orthogonal reasoning (John Rex)
- Exercise (or stress) model systems (Alan Forrest)
- Use more than one model system
 - Another laboratory animal model
 - Hollow fiber model
 - Actively manage and seek explanation for discordant results
- Use more than one PD lab
- Use more than one study readout
 - Log₁₀CFUs, biomarkers are the primary endpoints
 - Survival, histopathology, inflammatory markers, radiology, bioluminescence are secondary
- Use multiple strains
 - Geographically disperse, well-characterized, established provenance
 - Using strains with resistance mechanisms likely to be encountered in clinical trials

Endpoints & benchmarking

